沈阳YE2-132S1-2 5.5KW三相异步电动机哪家好_【金港电机有限公司】

2023-05-01 10:39:00 买帖  | 投诉/举报
  

公司是目前生产新型电动机的厂家之一,是一家集科研、开发、生产、销售、服务为一体的专业化企业

我公司产品包含YE2系列高效节能电机,YE3系列超高效节能电机,YVF2系列变频电动机,YT系列轴流式电机,YD多速电机,YH系列船用电机,YB3系电高效节能防爆电机,YBX3系列超高效节能防爆电机,YBK2系列矿井下防爆电机,YCT电磁调速电机,YEJ电磁制动电机,YVF2系列变频电机,YBP系列防爆变频电机 等多个品种!

公司的经营宗旨是:质量至上、信誉至上、竭诚服务、匠患匠赢。我们以节能的产品和真诚周到的服务。热烈欢迎客商前来洽谈业务。


ac电机和dc电机的区别

我们来科普一下吧:AC电机就是交流电机,DC电机就是直流电机。这两种电机,有什么区别呢,这要从电机的工作原理来区别了;
首先,直流电机供电是采用直流电源,例如小时候玩的四驱车,用的干电池就是直流电源,工厂里头用的直流电机,接的是220V的交流电源是经过整流装置变成直流,改变电源电压可以调节电机转速,是从额定转速往下调,但直流电机电枢里头的电流是交变得,为什么要交变呢?里头涉及到转子能不能按一圈一圈转的问题,可以去看下书;交流电机的供电电源是交流电源,由于德国工程师提出的交流电机的矢量控制理论和一些交流电机技术的突破,在高性能的电机控制领域,打破了直流电机的垄断场面。 然后,两者之间的结构主要还是有定子和转子构成,但是各自的转子和定子各自的作用区别挺大,直流电机的电枢是在转子上,而交流电机的电枢是在定子上。直流电机结构(电枢、磁极、换向器和电刷)相对较简单,核心部件是换向器和电刷(这部分是直流电机的致命弱点),交流电机(种类较多)可分为同步电机(主要是变频调速)和异步电机,交流电机中的异步电动机的气隙比同容量的直流电动机气隙小的多,提高功率因数,应尽量让气隙小些。


永磁同步电动机齿槽转矩的测量方法图解

齿槽转矩是指永磁同步电动机绕组开路时,电机回转一周内,由于电枢铁心开槽,有趋于最小磁阻位置的倾向而产生的周期性转矩。永磁同步电机的三相绕组在不通电且绕组开路的情况下,用手轻轻转动转子,你会感觉到转子上面有一个力在与你较劲。这个力在一圈的范围内大小不均匀,而且会发现转子具有若干个定位点。在自然的状态下转子保持在这些定位点,只有外界施加一定的力,才能改变转子的位置,正因为这样齿槽转矩也被称为定位转矩。
齿槽转矩的产生主要是由于定子齿槽的存在,齿槽转矩的产生会造成电机运行中的振动、噪声、启动和调速控制困难。如何抑制或消除齿槽转矩一直是永磁电机研究的重要方向,准确测量齿槽转矩可以为永磁电机设计和控制提供帮助,下面本文对几种齿槽转矩测试方法进行对比介绍。
一、传感器的动态测量方法测量齿槽转矩

被测电动机通过转矩传感器与制动器(例如磁粉制动器)相连,制动器加载,被测电动机稳速运转,从转矩测试仪直接测量转矩瞬时值,在测得的转矩值中求得齿槽转矩值。

这种测量方法测得的转矩包含了被测电动机自身的齿槽转矩、控制器控制引起的脉动转矩(闭环控制运行条件下情况更为复杂)和负载引起的脉动转矩。
所以为了能得到最接近真实的齿槽转矩,测试时需注意几点:
1) 要求负载自身的脉动转矩要小(建议采用磁粉制动器);
2) 要求传感器系统的采样速率要高(建议3K以上),能实现动态转矩测量;
3) 要求转矩检测仪器能够进行数据处理。
二、步进电机的静态测量方法测量齿槽转矩

如图3所示,将步进电动机、转矩传感器和被测电动机固连载同一轴线上,通过控制脉冲数使步进电动机精确地将被试电机转子旋转一定角度后,步进电动机利用自身的保持转矩作为转矩传感器的一个固定端,这样齿槽转矩就作用在转矩传感器上,从测试仪可以直接独处齿槽转矩。
测量过程中还应注意几点:
1) 由于大多数电动机的齿槽转矩都比较小,为了提高转矩传感器的测试精度,可以在被测电动机侧增加一偏置重物,提高测试质量;
2) 针对齿槽较多的被测电动机,步进电动机的步数应该足够多;
3) 为避免引入步进电动机运转的波动,步数之间的间隔时间应该足够长。
三、测电压法测量齿槽转矩

测试系统示意图如图4所示,它主要由步进电机、机械分度头及电参量测量仪组成。步进电机和被测电机转子轴作刚性连接,机械分度头爪夹住步进电动机的外壳,控制步进电机转过角度。在步进电机中如果给其中一相绕组通直流电,其他两相绕组加以交流电压,由于步进电机中三相绕组间的耦合关系,就会在通直流电的绕组上产生感应电势,感应电势的大小取决于步进电机中的气隙磁通。根据步进电机的矩角特性,静态时外加力矩的大小跟失调角有关,而失调角决定转子位置,直接影响气隙磁通。利用这一原理,可通过检测步进电机通直流电绕组上的感应电势得出被测电机的齿槽转矩。
该方法首先测得步进电机感应电势随力矩变化的曲线,然后连接被测电机,转动分度头,选取采样点,从电压表上读取步进电机通直流电绕组上的电压,计算出感应电势,根据感应电势,查步进电机感应电势-力矩曲线,得到该采样点的齿槽转矩。
使用该方法可以在齿槽转矩的一个周期内进行多采样点测量,但试验方法复杂,操作麻烦,步进电机感应电势与力矩的曲线精度不高,测量误差较大。
四、杠杆测量法测量齿槽转矩

被测电动机不通电,手动拉动数字测力仪,拉到杠杆滑动前瞬间的力的显示值Fmax,乘以力臂长L,就是齿槽转矩幅值(单峰幅值)。
杠杆测量法是一种非常简单、直管、易于实现的测量方法,但是精度很难保证,所以常在测量要求精度不高或者条件受限时采用。测量时需注意几点:
1) 杠杆垂直向下起始测量(杠杆尽量轻;
2) 手拉时,要尽量保持力F与力臂F垂直;
3) 手拉要保持缓慢、平稳。
电子秤法测量齿槽转矩
五、被测变频器基本参数

利用电子秤测量齿槽转矩的原理图,被测电机的定子用可以精确控制转动角度的装置(如车床,步进电机等)夹紧。在被测电机轴伸端加以平衡杆,在平衡杆两端加装以支杆。
测试时,支杆压在电子秤上,在平衡杆上加一配重物,确保不论电机正反转,支杆始终与电子秤接触。调节电子秤的高度,使平衡杆水平,记录电子秤示数M,保持平衡杆水平,转动电机,每转过一个角度记录一次电子秤示数F。齿槽转矩为:
用电子秤测量,需要时刻保持平衡杆的水平,试验过程比较繁琐。
六、砝码法测量齿槽转矩
上述的方法大多存在的问题是测量时需要一个高精度的能控制被测电机转角的装置,试验需要的夹装工具较多,且需要针对具体电机设计。为了简化测量方法,降低试验成本,下
面采用一种新的测量方法——砝码法,测试原理图如图7所示,在转轴上装悬挂砝码的支杆,在定子上安装带角度刻度的圆盘,以方便测出悬挂砝码的力臂以及确定转子转过角度。

测量时先用水平仪调节圆盘的0刻度线水平,将加工的支杆安装在电机轴伸端。在砝码上缠上一定强度较轻的绳索,转动支杆到被测点的刻度,在支杆上轻轻加挂砝码,记录支杆开始转动时的砝码质量M。用下式计算测得的转矩T:
式中:
g:重力加速度;
θ为被测点的角度。
测得的转矩包含电机的齿槽转矩和摩擦转矩,对于被试电机来说不同位置的摩擦转矩基本不变,齿槽转矩根据理论分析是周期性变化的,可通过求测得转矩最大值和最小值的均值来得到摩擦转矩,最后测得的转矩就能得到齿槽转矩。
测量时要注意以下几点:
1) 根据被测电机齿槽转矩的大小,选择合适长度的支杆和砝码。
2) 砝码要轻轻的挂在支架上。


三相异步电动机的转差率

异步电动机同步转速n1与转子转速n的转速差与同步转速n1的比值,称为转差率,用s表示,即s=n1-n/n1×100%。三相异步电动机在额定负载时,其转差率为2%~8%,即转子转速比同步转速低2%~8%。

在电动机起动瞬间,旋转磁场已经产生,但转子还未转动(n=0),这时转差率s=1。转差率的变化范围是0

转差率是异步电动机的一个重要参数,习惯上用转差率的大小来说明电动机的运行速度。电动机空载时转差率很小,即转子的转速接近同步转速。随着负载的增加,转差率也增大。就是说,转子的转差速随负载而变。三相异步电动机的额定负载运行时,其转差率很小,约为2%~6%。


单相电机电容的选择

可根据以下公式计算

分相起动电容容量:

C=350000*I/2p*f*U*cosφ

式中:I---电流;

f---频率;

U---电压;

2p---功率因数大取2,功率因数小取4;

cosφ---功率因数(0.4~0.8)。

分相起动电容耐压:

电容耐压大于或等于1.42*U 。

运转电容容量:

C=120000*I/2p*f*U*cosφ

式中:I---电流;

f---频率;

U---电压;

2p---取2.4;

cosφ---功率因数(0.4~0.8)。

运转电容耐压:

电容耐压大于或等于(2~2.3)*U 。

双值电容电机的起动电容容量:

C=(1.5~2.5)*运转电容容量。

起动电容耐压:

电容耐压大于或等于1.42*U 。

单相电机电容器的容量可以用经验公式C=35000I/2PUfcos&算出

如:某电机250W,供电AC220V则 I=250W/220V=1.2A

C=35000x1.2/2x1x220x50x0.8=24uf

可以选择350V30uf的电容. 通常选择耐压400V-450电容。

运行电容C1=1950*IN/U1/COSφ。

起动电容一般为工作电容的3倍左右,可根据起动时负载大小来选。如果是30uf的运行电容,那么可以选择150uf的启动.


单相异步电动机过热故障检修

1.绕组短路。当运转绕组或起动绕组短路时,短路线圈会产生很大的热量,并发出噪声。若电动机持续运行,热量无法散发,将导致电动机过热,损坏未短路的绕组。因此,电动机过热时应立即停机检查,根据具体情况采取相应措施进行修理。

2.绕组接地。接地较严重时后果与短路一样,轻则电动机过热,严重时烧毁绕组。

3.运转绕组与起动绕组碰线短路。当运转绕组与起动绕组碰线短路时,电流经运转绕组流入起动绕组,时间一长起动绕组就会烧毁。要寻找碰线部位,可将两个绕组分别与电动机接线端分开,然后将检验灯一端接运转绕组,另一端接起动绕组,若检验灯亮即表明两绕组相碰短路。然后,依次将运转绕组的各极与起动绕组断开,若断开某一极时检验灯熄灭,则表明该极绕组与起动绕组碰线短路。查找碰线处并将其包扎绝缘即可。如果仍无法确定碰线部位,只有将起动绕组的线圈拆开进行检查。

4.轴承损坏或缺少润滑脂。轴承损坏使定子、转子相擦,或轴承内缺少润滑脂,都会使电动机过热。检查轴承,若缺少润滑脂,应添加适量润滑脂;如果轴承磨损或损坏,则应更换轴承。

5.过载。电动机过载时,会因绕组过流而使电动机过热。若负载过重但无法调整,应更换功率较大的电动机。如果过载是因电动机内部部件相碰、阻塞等造成,则应检修电动机机械部分。