郑州YE2-132S1-2 5.5KW三相异步电动机 驰名中外_【金港电机】

2023-04-25 02:17:17 买帖  | 投诉/举报
  

我们是一家集科研开发、生产制造和销售服务为一体的国内专业节能电动机生产企业。公司主导产品以YE2、YE3系列中小型交流电动机为支撑、以低压大功率交流电动机、中高压电动机、高效电机智能控制节能系统为主要发展方向。

本厂具有完善的质量保证体系、雄厚的技术开发能力和先进的检测手段,本厂生产的电动机以过硬的质量、完善的服务赢得了广大用户的信赖,产品销往全国,各界用户好评如潮。 本厂信守“质量第一、用户至上”的承诺,以优质高效为服务准则,以互惠互利、共同发展为经营宗旨,真诚 欢迎各界朋友光临指导,洽谈业务,我们将竭诚为您服务。


常用电动机保护措施有哪些?

有短路保护、欠压保护、失压保护、弱磁保护、过载保护及过电流保护等。电动机保护的任务是保证电动机长期正常运行,避免由于各种故障造成电气设备、电网和机械设备的损坏,以保证人身的安全。保护环节是所有自动控制系统不可缺少的组成部分。这里讨论的是低压电路的保护。一般来讲、有常用的以下几种保护:短路保护、过电流保护、故保护及欠电压保护等。
1.短路保护

 因电动机绕组和导线的绝缘损坏,控制电器及线路损坏,误操作碰线等引起线路短路故障时,用保护电器迅速切断电源的措施为短路保护。常用的短路保护电器有熔断器和自动空气断路器。当电动机绕组的绝缘、导线的绝缘损坏时,或电气线路发生故障时,例如正转接触器的主触点未断开而反转接触器的主触点闭合都会产生短路现象。此时,电路中会产生很大的短路电流,它将导致产生过大的热量,使电动机、电器和导线的绝缘损坏。因此、必须在发生短路现象时立即将电源切断。常用的短路保护元件是熔断器和断路器。熔断器的熔体串联在被保护的电路中,当电路发生短路或严重过载时,它自动熔断,从而切断电路,达到保护的目的。断路器(俗称自动开关),它有短路、过载和欠电压保护功能。通常熔断器比较适用于对动作准确度要求不高和自动化程度较差的系统中。在发生短路时很可能造成一相熔断器熔断,造成单相运行;但对于断路器只要发生短路就会自动跳闸,将三相电路同时切断。断路器结构复杂,广泛用于要求较高的场合。
2.欠压保护

 当电网电压降低时,电动机便在欠压下运行。由于电动机载荷没有改变,所以欠压下电动机转矩下降,定子绕组电流增加,影响电动机的正常运转甚至损坏电动机,此时用保护电器切断电源,为欠压保护。实现欠压保护的电器有接触器和电磁式电压继电器。熔断器和热继电器不能进行欠压保护,因为电动机在欠压下运行时.其定子绕组增加的幅度尚不足以使熔断器和热继电器动作,所以这两种电器不能进行欠压保护。当电动机正在运行时,如果电源电压因某种原因消失,为了防止电源恢复时电动机自行起动的保护称为零电压保护,零电压保护常选用零压保护继电器KHV。当电动机正常运行时,电源电压过分地降低将引起一些电器释放,造成控制线路不正常工作,可能产生事故。因此,需要在电源电压降到一定允许值以下时,将电源切断,这就是欠电压保护。欠电压保护常用电磁式欠电压继电器K当电动机正常运行时,电源电压过分地降低将引起一些电器释放,造成控制线路不正常工作,可能产生事故。因此,需要在电源电压降到一定允许值以下时,将电源切断,这就是欠电压保护。(http://www.diangon.com/版权所有)欠电压保护常用电磁式欠电压继电器KV来实现。欠电压继电器的线圈跨接在电源两相之间,电动机正常运行时,当线路中出现欠电压故障或零压时,欠电压继电器的线圈KV得电,其常闭触点打开,接触器KM释放,电动机被切断电源。对于按钮起动并具有自锁环节的电路,本身已具有零电压保护功能,不必再考虑零电压保护。
3.失压保护

 生产机械在工作时,由于某种原因而发生电网突然停电,当重新恢复供电时,保护电器要保证生产机械重新起动后才能运转,不致造成人身和设备事故,这种保护为失压(零压)保护。实现失压(零压)保护的电器有接触器和中间继电器。
4.弱磁保护

 用保护电器保证直流电动机在一定强度的磁场下工作,不致造成磁场减弱或消失,避免使电动机转速迅速升高,甚至发生飞车现象,这种保护为弱磁保护。在直流电动机励磁回路中.串入弱磁继电器(即欠电流继电器)可实现弱磁保护。欠电流继电器工作原理:在直流电动机起动、运行过程中,当励磁电流值达到欠电流继电器的动作值时,继电器就吸合,使串接在控制电路中的常开触头闭合,允许电动机起动或维持正常运转;但当励磁电流减小很多或消失时,欠电流继电器就释放,其常开触头断开,切断控制电路,接触器线圈失电,电动机断电停转。
5.过载保护

 当电动机负载过大,起动操作频繁或缺相运行时,会使电动机的工作电流长时间超过其额定电流,导致电动机寿命缩短或损坏。当电动机过载时,用保护电器切断电源的措施为过载保护。
热保护又称长期过载保护。所谓过载是指电动机的电流大于其额定电流。造成过载的原因很多,如负载过大、三相电动机单相运行、欠电压运行等。当长期过载时,电动机发热,使温度超过允许值,电动机的绝缘材料就要变脆,寿命降低、严重时使电动机损坏,因此必须予以保护。常用的过载保护元件是热继电器。热继电器可以满足这样的要求:当电动机为额定电流时,电动机为额定温升,热继电器不动作;在过载电流较小时,热继电器要经过较长时间才动作;过载电流较大时,热继电器则经过较短时间就会动作。
由于热惯性的原因,热继电器不会因电动机短时过载冲击电流或短路电流而立即动作。所以在使用热继电器作过载保护的同时,还必须设有短路保护,并且选作短路保护的熔断器熔体的额定电流不应超过4倍热继电器发热元件的额定电流。
6.过电流保护

 用保护电器限制电动机的起动电流或制动电流,使电动机在安全电流值下运行,不致造成电动机或机械设备损坏,这种保护为过电流保护。由于不正确的起动和过大的负载转矩以及频繁的反接制动,都会引起过电流。为了限制电动机的起动或制动电流过大,常常在直流电动机的电枢回路中或交流绕线转子电动机的转子回路中串入附加的电阻。若在起动或制动时,此附加电阻已被短接,就会造成很大的起动或制动电流。另外,电动机的负载剧烈增加,也要引起电动机过大的电流,过电流的危害与短路电流的危害一样,只是程度上的不同,过电流保护常用断路器或电磁式过电流继电器。将过电流继电器串联在被保护的电路中,当发生过电流时,过电流继电器KA线圈中的电流达到其动作值,于是吸动衔铁,打开其常闭触点,使接触器KM释放,从而切断电源。这里过电流继电器只是一个检测电流大小的元件,切断过电流还是靠接触器。如果用断路器实现过电流保护.则检测电流大小的元件就是断路器的电流检波线圈,而断路器的主触点用以切断过电流。
一般用电磁式过电流继电器实现过电流保护。
容易产生过电流的情况:在直流电动机的电枢绕组和三相交流绕线式转子异步电动机的转子绕组中串入附加电阻,以限制电动机的起动或制动电流;如果在起动或制动时,附加电阻被短接,则会造成很大的起动电流或制动电流,在这种情况下,容易出现过电流。
实施过电流保护的方法:将电磁式过电流继电器的线圈串接在主电路中,其常闭触头串接在控制电路中;当电动机的过电流值达到过电流继电器的动作值时,其常闭触头断开控制电路,使电动机脱离电源停转,从而实现了过电流保护。
过载保护与过电流保护的区别:过载保护由热继电器实现,有热惯性,当电动机过载一定时问后才动作,多用于三相交流异步电动机的保护;过电流保护由电磁式过电流继电器实现,动作灵敏,一旦出现过电流能立即动作,切断电源,多用于直流电动机和三相交流绕线式转子异步电动机的保护。


电动机外壳带电原因及处理方法

电动机外壳带电的可能原因有:

(1)引出线或接线盒接头绝缘损坏碰地。

(2)端部太长碰机壳。

(3)绕组绝缘损伤接地。

(4)电动机外壳没有可靠接地。

接地保护工作未到位

1)在雷雨季节时,易发生雷电击穿绝缘的事故,从而导致绕组接地,造成电动机外壳带电。在雷雨季节,应及时测量电动机的绝缘电阻是否符合要求,以免发生危险。

2)电动机外壳保护接地或保护接零不符合要求,没有采用保护接地或保护接零的安全措施,都会造成电动机外壳带电。如果没有采取末级漏电保护的安全措施,更是十分危险,需要人们注意。

特别说明的是,在同一供电系统中使用的电动机,存在保护接地和保护接零混用的现象。若采用保护接地的电动机碰壳短路时,所产生的短路电流没有使熔断器或者其他保护电器动作,则中性线电位升高,会使与中性线相连接的电动机的金属外壳带上使人触电的危险电压。所以在同一供电系统中,电动机的保护接地和保护接零绝对不能混用。


电动机的短路保护(电动机保护电器瞬时动作电流整定值)

电动机在短路情况下的保护,通常选用断路器,有的地方也使用熔断器。一些文献提到,断路器的瞬时动作电流整定值应能躲过电动机的全起动电流。Isct—断路器瞬时动作电流整定值A;k—可靠系数,它考虑了电动机起动电流的误差和断路器瞬动电流的误差,k一般取1.2;I’’st—全起动电流值,也称尖峰电流A。所谓全起动电流,是包括周期分量和非周期分量两部分。非周期分量的衰减时间约为30ms左右,而一般的非选择性断路器的全分断时间在20ms之内,因此必须把非周期分量考虑进去。I’st为1.7~2倍的电动机起动电流I’st。在诸多文献中,如《建筑电气设计手册》规定Isct≥(1.7~2)Ist,而《工业与民用配电设计手册》规定Isct=1.7Ist,有的手册则规定Icst为2~2.5倍的电动机起动电流。低压电器标准,如JB1284《低压断路器》的编制说明中认为,根据实验和统计,保护鼠笼型电动机的断路器,其瞬动电流是整定在8~15倍电动机的额定电流的,而绕线式电动机应整定在3~6倍电动机额定电流。8~15倍鼠笼型电动机额定电流是一个范围,具体的数值还需要考虑电动机的型号、容量、起动条件等等因素。以下,我们分析一下,鼠笼型电动机起动时的全起动电流(类峰电流)。

1.起动电流的低功率因数,过渡过程的非周期分量的存在。在这种情况下,周期分量的幅值尽管稳定,但受非周期分量的影响,故有尖峰电流流过(功率因数低,表示电感L大,时间常数T=L/R大,非周期分量Imsin(Ψ—)e-t/T值大,非周

期分量的衰减慢)。当起动电流的COS=0.3时,尖峰电流为起动电流(有效值)的2倍左右;

2.残余电压的影响而产生的瞬间再合闸的尖峰电流。电动机切断电源后再接通时,当切断电源而电动机尚未停下,就带有残余电压。这种残余电压不仅是由于有剩磁而产生,而且还由于次级线圈(转子)有残余电流而形成,所存在的残余电压与再合闸时的电源电压在某一相位时的叠加,就会产生尖峰电流。其大小与电动机完全停止后再起动相比,要大(残余电压+电源电压)比电源电压倍,这种尖峰电流虽然仅出现1-2周波,但足以使断路器的瞬时脱扣器动作。因为1、2两个原因,可出现下列情况:

(1)电动机直接起动

由于COS为0.3,尖峰电流为(6In)的2倍,等于In(有效值)故塑壳式断路器的瞬时脱扣器整定电流值最小值为8.5In,(In为电动机的额定电流)

(2)星—三角(Y-Δ)起动

也假设为COS0.3,当从Y起动到Δ运转的一瞬间(1~2周波),尖峰电流(峰值)约为额定电流(有效值)的19倍,则断路器必须把瞬时动作电流整定到14In?以上。

(3)自耦减压起动时

COS=0.3,电动机起动电流为6In,由于有尖峰电流的存在,原来按80%抽头的正常起动电流为3.84In,现提高到7.7In,按65%抽头的正常起动电流为4.3In,现提高到5In。

(4)瞬时再起动

按COS为0.3,起动电流为6In,考虑到残余电压的影响,尖峰电流为最大,是额定电流的24倍(6×2×2)(峰值),其有效值为=16.97≈17,因而断路器的瞬时脱扣器的整定电流必须在电动机额定电流的17倍以上。从以上分析可知,正是电动机的型号、结构、起动方式等的不同,导致尖峰电流的出现,由此而推出Isct在8~15倍In之内(个别的还可达到17倍In),对于瞬时动作电流可调的断路器,其调节范围按8~15倍In考虑,而大量的塑壳式断路器(不可调),取其平均值12In,误差采用熔断器保护电动机的瞬动,熔断器的熔体电流可由下式确定:

Irin≥Ist比α

式中:Ist—电动机的起动电流A;

α—决定起动状况和熔断器的系数,一般为2~3之间。


直流电动机换向器维护与保养要点

正常运行的换向器,应具有平滑的圆柱形表面,且表面有一层紫红色的光亮氧化膜。这层氧化膜既可保护换向器,又可改善换向,因此要加以保护,不得擦去。

对换向器的维护保养,应做到以下几点:

(1)在不运行时要、用干净的毛刷或蘸酒精的布清除换向片间的污垢,擦净换向器接触面,必要时用压缩空气吹净电刷粉末。

(2)按时测量换向器表面的偏心度(不得大于0.1毫米);如果换向器吗、表面灼伤或有熔渣,应磨平灼伤面,用00号砂纸擦去熔渣,处理后应吹净表面粉尘。

(3)由于正极电刷对换向器的磨损比负极严重,所以要经常注意检查换向器的圆柱形表面磨损程度,按极性将电刷相互交替分开,以防表面磨损不均匀。

(4)如果换向器表面出现严重灼痕或粗糙不平,表面不圆或有局部凸凹等现象,则应将其拆下重新车削。